Sains Malaysiana 53(6)(2024): 1321-1332
http://doi.org/10.17576/jsm-2024-5306-08
Determining
the Time Points for the Development of Early and Advanced Stages of Diabetic
Cardiomyopathy in Streptozotocin-Induced Type 1
Diabetes Mellitus Rat Model
(Menentukan Titik Masa untuk Pembentukan Tahap Awal dan Lanjutan KardiomiopatiDiabetes pada Model Tikus Diabetes Mellitus Jenis 1 Teraruh Streptozotocin)
FATIN FARHANA
JUBAIDI1, NUR LIYANA MOHAMMED YUSOF1, SATIRAH
ZAINALABIDIN2,
IZATUS SHIMA TAIB1,
ZARIYANTEY ABD HAMID1 & SITI BALKIS BUDIN1,*
1Center
for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health
Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
2Center
for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia,
50300 Kuala Lumpur, Malaysia
Received: 9 February 2024/Accepted: 16 May 2024
Abstract
The characteristics of early and advanced stages of diabetic cardiomyopathy (DCM) are well-understood; however, the time points by which these stages are developed in animal models vary and depend on the hyperglycaemic status and duration of diabetes. This study was aimed to determine the time points for the development of early and advanced stages of DCM from the induction of type 1 diabetes mellitus by identifying the functional and histological changes that occurred. Type 1 diabetes was induced via streptozotocin injection, and rats were divided into 4-week and 8-week diabetic groups. A group of non-diabetic rats served as the normal control. Cardiac functions and structural changes were analysed. Results showed that after four weeks, all diabetic rats displayed early DCM characteristics, including pronounced left ventricular diastolic dysfunction and cardiomyocyte hypertrophy (P < 0.05) compared to the normal control. After eight weeks, there was a significant deterioration in both left ventricular systolic and diastolic function compared to the normal control, along with marked cardiomyocyte hypertrophy and myocardial fibrosis (P < 0.05), signifying the development of advanced DCM. In summary, this findings revealed the development of early and advanced stages of DCM at four weeks and eight weeks of diabetes respectively in diabetes melitus type 1 rat model.
Keywords: Diastolic dysfunction; fibrosis; hypertrophy; systolic
dysfunction; type 1 diabetes mellitus
Abstrak
Ciri-ciri peringkat awal dan lanjut kardiomiopati diabetes (DCM) telah dikenalpasti; walau bagaimanapun, titik masa di mana peringkat ini terbentuk di dalam model haiwan adalah berbeza dan bergantung kepada status hiperglisemia dan tempoh diabetes. Kajian ini bertujuan untuk menentukan titik masa pembentukan peringkat awal dan lanjut DCM daripada aruhan diabetes mellitus jenis 1 dengan mengenal pasti perubahan fungsi dan histologi yang berlaku. Diabetes jenis 1 telah diaruh secara suntikan streptozotocin dan tikus dibahagikan kepada kumpulan diabetes 4 dan 8 minggu. Sementara itu, tikus bukan diabetes dijadikan kumpulan kawalan. Fungsi dan perubahan struktur jantung dianalisa. Hasil kajian menunjukkan pada empat minggu diabetes, semua tikus diabetes menunjukkan ciri-ciri awal DCM, termasuklah disfungsi diastolik ventrikel kiri dan hipertrofi kardiomiosit yang ketara (P <0.05) berbanding kumpulan normal. Selepas lapan minggu diabetes, terdapat kemerosotan yang ketara pada kedua-dua fungsi sistolik dan diastolik ventrikel kiri berbanding dengan kumpulan normal, dengan hipertrofi kardiomiosit dan fibrosis miokardium yang ketara (P <0.05), menunjukkan pembentukan DCM peringkat lanjut. Kesimpulannya, DCM peringkat awal berlaku pada empat minggu diabetes manakala DCM peringkat lanjut pula pada lapan minggu diabetes pada model tikus diabetes jenis 1.
Kata kunci: Diabetes melitus jenis 1; disfungsi diastolik; disfungsi sistolik; fibrosis; hipertrofi
REFERENCES
Akula, A.
2003. Biochemical, histological and echocardiographic changes during
experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacological
Research 48(5): 429-435.
Alomar,
F.A., Al-Rubaish, A., Al-Muhanna,
F., Al-Ali, A.K., McMillan, J., Singh, J. & Bidasee,
K.R. 2020. Adeno-associated viral transfer of glyoxalase-1 blunts carbonyl and
oxidative stresses in hearts of type 1 diabetic rats. Antioxidants 9(7):
592.
Aneja, A.,
Tang, W.H.W., Bansilal, S., Garcia, M.J. & Farkouh, M.E. 2008. Diabetic cardiomyopathy: Insights into
pathogenesis, diagnostic challenges, and therapeutic options. The American
Journal of Medicine 121(9): 748-757.
Animal
Welfare Board. 2019. Animal Welfare Board Mycode for the Care and Use of Animals for Scientific Purposes Malaysian Code of
Practice for the Care and Use of Animals for Scientific Purposes (MyCode). Edisi ke-2. Putrajaya:
Department of Veterinary Services Malaysia.
Ansley,
D.M. & Wang, B. 2013. Oxidative stress and myocardial injury in the
diabetic heart. The Journal of Pathology 229(2): 232-241.
Becher,
P.M., Lindner, D., Frölich, M., Savvatis,
K., Westermann, D. & Tschöpe,
C. 2013. Assessment of cardiac inflammation and remodeling during the development of streptozotocin-induced
diabetic cardiomyopathy in vivo: A time course analysis. International
Journal of Molecular Medicine 32(1): 158-164.
Chen,
X., Ashraf, S., Ashraf, N. & Harmancey, R. 2021.
UCP3 (Uncoupling Protein 3) insufficiency exacerbates left ventricular
diastolic dysfunction during angiotensin II‐induced hypertension. Journal
of the American Heart Association 10(18): e022556.
Frangogiannis, N.G.
2014. The inflammatory response in myocardial injury, repair, and remodelling. Nature
Reviews Cardiology 11(5): 255-265.
Gliozzi, M., Scarano, F., Musolino, V., Carresi, C., Scicchitano, M., Ruga, S., Zito, M.C., Nucera, S., Bosco, F., Maiuolo,
J., Macrì, R., Guarnieri,
L., Mollace, R., Coppoletta,
A.R., Nicita, C., Tavernese,
A., Palma, E., Muscoli, C. & Mollace,
V. 2020. Role of TSPO/VDAC1 upregulation and matrix metalloproteinase-2
localization in the dysfunctional myocardium of hyperglycaemic rats. International
Journal of Molecular Sciences 21(20): 7432.
Gulsin, G.S., Athithan, L. & McCann, G.P. 2019. Diabetic
cardiomyopathy: Prevalence, determinants and potential treatments. Therapeutic
Advances in Endocrinology and Metabolism 10: 204201881983486
Hoit, B.D.,
Castro, C., Bultron, G., Knight, S. & Matlib, M.A. 1999. Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced
diabetic rats. Journal of Cardiac Failure 5(4): 324-333.
Huo, J-L.,
Feng, Q., Pan, S., Fu, W-J., Liu, Z. & Liu, Z. 2023. Diabetic
cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discovery 9(1): 256.
Huynh,
K., Bernardo, B.C., McMullen, J.R. & Ritchie, R.H. 2014. Diabetic
cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacology and Therapeutics 142(3): 375-415.
International
Diabetes Federation (IDF). 2021. IDF Diabetes Atlas. 10th ed. Brussel,
Belgium: International Diabetes Federation. www.diabetesatlas.org.
Jia, G.,
Hill, M.A. & Sowers, J.R. 2018. Diabetic cardiomyopathy: An update of
mechanisms contributing to this clinical entity. Circulation Research 122(4): 624-638.
Lateef,
R., Al-Masri, A. & Alyahya,
A. 2015. Langendorff’s isolated perfused rat heart
technique: A review. International Journal of Basic and Clinical
Pharmacology 4(6): 1314-1322.
Liang,
R., Zhao, Y., Shi, M., Zhang, G., Zhao, Y., Zhang, B. & Liang, R. 2021. Skimmin protects diabetic cardiomyopathy in streptozotocin‐induced diabetic rats. The
Kaohsiung Journal of Medical Sciences 37(2): 136-144.
Lim,
Y.C., Budin, S.B., Othman, F., Latip,
J. & Zainalabidin, S. 2017. Roselle polyphenols
exert potent negative inotropic effects via modulation of intracellular calcium
regulatory channels in isolated rat heart. Cardiovascular Toxicology 17(3): 251-259.
Liu,
X., Guo, B., Zhang, W., Ma, B. & Li, Y. 2021.
MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-κB signalling pathway. The Journal of Biochemistry 170(3): 349-362.
Liu,
X., Song, F., Liu, C. & Zhang, Y. 2020. 25‑OH‑PPD inhibits
hypertrophy on diabetic cardiomyopathy via the PI3k/Akt/GSK‑3β signaling pathway. Experimental and Therapeutic
Medicine 20(3): 2141-2147.
Lorenzo-Almorós, A., Tuñón, J., Orejas, M., Cortés, M., Egido, J.
& Lorenzo, Ó. 2017. Diagnostic approaches for diabetic cardiomyopathy. Cardiovascular Diabetology 16: 28.
Luo,
J., Yan, D., Li, S., Liu, S., Zeng, F., Cheung, C.W., Liu, H., Irwin, M.G.,
Huang, H. & Xia, Z. 2020. Allopurinol reduces oxidative stress and
activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. Journal of
Cellular and Molecular Medicine 24(2): 1760-1773.
Marchini, G.S., Cestari, I.N., Salemi,
V.M.C., Irigoyen, M.C., Arnold, A., Kakoi, A., Rocon, C., Aiello,
V.D. & Cestari, I.A. 2020. Early changes in
myocyte contractility and cardiac function in streptozotocin-induced
type 1 diabetes in rats. PLoS ONE 15(8): e0237305.
Marcinkiewicz, A., Ostrowski, S. & Drzewoski, J.
2017. Can the onset of heart failure be delayed by treating diabetic
cardiomyopathy? Diabetology & Metabolic
Syndrome 9(1): 21.
Mohammed Yusof, N.L., Tengku Affendi, T.N.T., Jubaidi, F.F., Zainalabidin, S. & Budin,
S.B. 2020. Hibiscus sabdariffa Linn. (Roselle) polyphenols-rich extract
prevents hyperglycemia-induced cardiac oxidative
stress and mitochondrial damage in diabetic rats. Sains Malaysiana 49(10): 2499-2506.
Mohammed Yusof, N.L., Zainalabidin,
S., Mohd Fauzi, N. & Budin, S.B. 2018. Hibiscus sabdariffa (Roselle)
polyphenol-rich extract averts cardiac functional and structural abnormalities
in type 1 diabetic rats. Applied Physiology, Nutrition and Metabolism 43(12): 1224-1232.
Mohan,
M., Dihoum, A., Mordi,
I.R., Choy, A.M., Rena, G. & Lang, C.C. 2021. Left ventricular hypertrophy
in diabetic cardiomyopathy: A target for intervention. Frontiers in
Cardiovascular Medicine 8: 746382.
Moral‐Sanz, J., Lopez‐Lopez, J.G., Menendez, C., Moreno,
E., Barreira, B., Morales‐Cano, D., Escolano, L., Fernandez‐Segoviano,
P., Villamor, E., Cogolludo,
A., Perez‐Vizcaino, F. & Moreno, L. 2012. Different patterns of
pulmonary vascular disease induced by type 1 diabetes and moderate hypoxia in
rats. Experimental Physiology 97(5): 676-686.
Mostafavinia, A., Amini, A., Ghorishi, S.K., Pouriran, R. & Bayat, M.
2016. The effects of dosage and the routes of administrations of streptozotocin and alloxan on
induction rate of type1 diabetes mellitus and mortality rate in rats. Laboratory
Animal Research 32(3): 160.
Nakamura,
M. & Sadoshima, J. 2018. Mechanisms of
physiological and pathological cardiac hypertrophy. Nature Reviews
Cardiology 15(7): 387-407.
Oh,
J.E., Jun, J.H., Hwang, H.J., Shin, E.J., Oh, Y.J. & Choi, Y.S. 2019. Dexmedetomidine restores autophagy and cardiac dysfunction
in rats with streptozotocin-induced diabetes
mellitus. Acta Diabetologica 56(1): 105-114.
Paolillo, S., Marsico, F., Prastaro, M., Renga, F., Esposito, L., De Martino, F., Di Napoli, P.,
Esposito, I., Ambrosio, A., Ianniruberto,
M., Mennella, R., Paolillo,
R. & Gargiulo, P. 2019. Diabetic cardiomyopathy:
Definition, diagnosis, and therapeutic implications. Heart Failure Clinics 15(3): 341-347.
Ritchie,
R.H. & Abel, E.D. 2020. Basic mechanisms of diabetic heart disease. Circulation
Research 126(11): 1501-1525.
Salvatore,
T., Pafundi, P.C., Galiero,
R., Albanese, G., Di Martino, A., Caturano, A., Vetrano, E., Rinaldi, L. & Sasso,
F.C. 2021. The diabetic cardiomyopathy: The contributing pathophysiological
mechanisms. Frontiers in Medicine 8: 695792.
Shaher, F.,
Wang, S., Qiu, H., Hu, Y., Zhang, Y., Wang, W.,
AL-Ward, H., Abdulghani, M.A.M., Baldi,
S. & Zhou, S. 2020. Effect and mechanism of Ganoderma lucidum spores on alleviation of diabetic
cardiomyopathy in a pilot in vivo study. Diabetes, Metabolic Syndrome
and Obesity 13: 4809-4822.
Silbiger, J.J.
2019. Pathophysiology and echocardiographic diagnosis of left ventricular diastolic
dysfunction. Journal of the American Society of Echocardiography 32(2):
216-232.e2.
Soetikno, V.,
Sari, F.R., Sukumaran, V., Lakshmanan, A.P., Mito,
S., Harima, M., Thandavarayan, R.A. Suzuki, K.,
Nagata, M., Takagi, R. & Watanabe, K. 2012. Curcumin prevents diabetic
cardiomyopathy in streptozotocin-induced diabetic
rats: Possible involvement of PKC–MAPK signaling pathway. European Journal of Pharmaceutical Sciences 47(3): 604-614.
Tate,
M., Deo, M., Cao, A.H., Hood, S.G., Huynh, K., Kiriazis, H., Du, X.J., Julius, T.L., Figtree, G.A.,
Dusting, G.J., Kaye, D.M. & Ritchie, R.H. 2017. Insulin replacement limits
progression of diabetic cardiomyopathy in the low-dose streptozotocin-induced
diabetic rat. Diabetes and Vascular Disease Research 14(5): 423-433.
Tate,
M., Grieve, D.J. & Ritchie, R.H. 2017. Are targeted therapies for diabetic
cardiomyopathy on the horizon? Clinical Science 131(10): 897-915.
Tatsuguchi, M., Seok, H.Y., Callis, T.E.,
Thomson, J.M., Chen, J-F., Newman, M., Rojas, M., Hammond, S.M. & Wang,
D-Z. 2007. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and
Cellular Cardiology 42(6): 1137-1141.
Wan Nor Arifin & Wan Mohammad Zahiruddin 2017. Sample size calculation in animal studies
using resource equation approach. Malaysian Journal of Medical Sciences 24(5): 101-105.
Wang,
H., Huang, S., Xu, M., Yang, J., Yang, J., Liu, M., Wan, C., Liao, H., Fan, D.
& Tang, Q. 2019. Galangin ameliorates cardiac remodeling via the MEK1/2–ERK1/2 and PI3K–AKT pathways. Journal
of Cellular Physiology 234(9): 15654-15667.
Wang,
L., Wu, H., Deng, Y., Zhang, S., Wei, Q., Yang, Q., Piao,
S., Bei, W., Rong, X. & Guo, J. 2021. FTZ ameliorates diabetic cardiomyopathy
by inhibiting inflammation and cardiac fibrosis in the streptozotocin-induced
model. Evidence-based Complementary and Alternative Medicine 2021:
5582567.
Wang,
S., Ding, L., Ji, H., Xu, Z., Liu, Q. & Zheng, Y. 2016. The role of p38
MAPK in the development of diabetic cardiomyopathy. International Journal of
Molecular Sciences 17(7): 1037.
Wang,
Y., Sun, H., Zhang, J., Xia, Z. & Chen, W. 2020. Streptozotocin-induced
diabetic cardiomyopathy in rats: Ameliorative effect of PIPERINE via Bcl2, Bax/Bcl2, and caspase-3 pathways. Bioscience,
Biotechnology, and Biochemistry 84(12): 2533-2544.
Wei,
M., Ong, L., Smith, M.T., Ross, F.B., Schmid, K., Hoey, A.J., Burstow, D. &
Brown, L. 2003. The streptozotocin-diabetic rat as a
model of the chronic complications of human diabetes. Heart, Lung and
Circulation 12(1): 44-50.
Xia,
Z., Kuo, K-H., Nagareddy,
P.R., Wang, F., Guo, Z., Guo,
T., Jiang, J. & McNeill, J.H. 2007. N-acetylcysteine attenuates PKCbeta2 overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats. Cardiovascular
Research 73(4): 770-782.
Xu, Z.,
Sun, J., Tong, Q., Lin, Q., Qian, L., Park, Y. & Zheng, Y. 2016. The Role
of ERK1/2 in the development of diabetic cardiomyopathy. International
Journal of Molecular Sciences 17(12): 2001.
Youssef,
M.E., Abdelrazek, H.M. & Moustafa,
Y.M. 2021. Cardioprotective role of GTS-21 by
attenuating the TLR4/NF-κB pathway in streptozotocin-induced diabetic cardiomyopathy in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology 394(1): 11-31.
*Corresponding
author; email: balkis@ukm.edu.my
|