Sains Malaysiana 53(6)(2024): 1321-1332

http://doi.org/10.17576/jsm-2024-5306-08

 

Determining the Time Points for the Development of Early and Advanced Stages of Diabetic Cardiomyopathy in Streptozotocin-Induced Type 1 Diabetes Mellitus Rat Model

(Menentukan Titik Masa untuk Pembentukan Tahap Awal dan Lanjutan KardiomiopatiDiabetes pada Model Tikus Diabetes Mellitus Jenis 1 Teraruh Streptozotocin)

 

FATIN FARHANA JUBAIDI1, NUR LIYANA MOHAMMED YUSOF1, SATIRAH ZAINALABIDIN2,

IZATUS SHIMA TAIB1, ZARIYANTEY ABD HAMID1 & SITI BALKIS BUDIN1,*

 

1Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

2Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

 

Received: 9 February 2024/Accepted: 16 May 2024

 

Abstract

The characteristics of early and advanced stages of diabetic cardiomyopathy (DCM) are well-understood; however, the time points by which these stages are developed in animal models vary and depend on the hyperglycaemic status and duration of diabetes. This study was aimed to determine the time points for the development of early and advanced stages of DCM from the induction of type 1 diabetes mellitus by identifying the functional and histological changes that occurred. Type 1 diabetes was induced via streptozotocin injection, and rats were divided into 4-week and 8-week diabetic groups. A group of non-diabetic rats served as the normal control. Cardiac functions and structural changes were analysed. Results showed that after four weeks, all diabetic rats displayed early DCM characteristics, including pronounced left ventricular diastolic dysfunction and cardiomyocyte hypertrophy (P < 0.05) compared to the normal control. After eight weeks, there was a significant deterioration in both left ventricular systolic and diastolic function compared to the normal control, along with marked cardiomyocyte hypertrophy and myocardial fibrosis (P < 0.05), signifying the development of advanced DCM. In summary, this findings revealed the development of early and advanced stages of DCM at four weeks and eight weeks of diabetes respectively in diabetes melitus type 1 rat model.

 

Keywords: Diastolic dysfunction; fibrosis; hypertrophy; systolic dysfunction; type 1 diabetes mellitus

 

Abstrak

Ciri-ciri peringkat awal dan lanjut kardiomiopati diabetes (DCM) telah dikenalpasti; walau bagaimanapun, titik masa di mana peringkat ini terbentuk di dalam model haiwan adalah berbeza dan bergantung kepada status hiperglisemia dan tempoh diabetes. Kajian ini bertujuan untuk menentukan titik masa pembentukan peringkat awal dan lanjut DCM daripada aruhan diabetes mellitus jenis 1 dengan mengenal pasti perubahan fungsi dan histologi yang berlaku. Diabetes jenis 1 telah diaruh secara suntikan streptozotocin dan tikus dibahagikan kepada kumpulan diabetes 4 dan 8 minggu. Sementara itu, tikus bukan diabetes dijadikan kumpulan kawalan. Fungsi dan perubahan struktur jantung dianalisa. Hasil kajian menunjukkan pada empat minggu diabetes, semua tikus diabetes menunjukkan ciri-ciri awal DCM, termasuklah disfungsi diastolik ventrikel kiri dan hipertrofi kardiomiosit yang ketara (P <0.05) berbanding kumpulan normal. Selepas lapan minggu diabetes, terdapat kemerosotan yang ketara pada kedua-dua fungsi sistolik dan diastolik ventrikel kiri berbanding dengan kumpulan normal, dengan hipertrofi kardiomiosit dan fibrosis miokardium yang ketara (P <0.05), menunjukkan pembentukan DCM peringkat lanjut. Kesimpulannya, DCM peringkat awal berlaku pada empat minggu diabetes manakala DCM peringkat lanjut pula pada lapan minggu diabetes pada model tikus diabetes jenis 1.

 

Kata kunci: Diabetes melitus jenis 1; disfungsi diastolik; disfungsi sistolik; fibrosis; hipertrofi

 

REFERENCES

Akula, A. 2003. Biochemical, histological and echocardiographic changes during experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacological Research 48(5): 429-435.

Alomar, F.A., Al-Rubaish, A., Al-Muhanna, F., Al-Ali, A.K., McMillan, J., Singh, J. & Bidasee, K.R. 2020. Adeno-associated viral transfer of glyoxalase-1 blunts carbonyl and oxidative stresses in hearts of type 1 diabetic rats. Antioxidants 9(7): 592.

Aneja, A., Tang, W.H.W., Bansilal, S., Garcia, M.J. & Farkouh, M.E. 2008. Diabetic cardiomyopathy: Insights into pathogenesis, diagnostic challenges, and therapeutic options. The American Journal of Medicine 121(9): 748-757.

Animal Welfare Board. 2019. Animal Welfare Board Mycode for the Care and Use of Animals for Scientific Purposes Malaysian Code of Practice for the Care and Use of Animals for Scientific Purposes (MyCode). Edisi ke-2. Putrajaya: Department of Veterinary Services Malaysia.

Ansley, D.M. & Wang, B. 2013. Oxidative stress and myocardial injury in the diabetic heart. The Journal of Pathology 229(2): 232-241.

Becher, P.M., Lindner, D., Frölich, M., Savvatis, K., Westermann, D. & Tschöpe, C. 2013. Assessment of cardiac inflammation and remodeling during the development of streptozotocin-induced diabetic cardiomyopathy in vivo: A time course analysis. International Journal of Molecular Medicine 32(1): 158-164.

Chen, X., Ashraf, S., Ashraf, N. & Harmancey, R. 2021. UCP3 (Uncoupling Protein 3) insufficiency exacerbates left ventricular diastolic dysfunction during angiotensin II‐induced hypertension. Journal of the American Heart Association 10(18): e022556.

Frangogiannis, N.G. 2014. The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology 11(5): 255-265.

Gliozzi, M., Scarano, F., Musolino, V., Carresi, C., Scicchitano, M., Ruga, S., Zito, M.C., Nucera, S., Bosco, F., Maiuolo, J., Macrì, R., Guarnieri, L., Mollace, R., Coppoletta, A.R., Nicita, C., Tavernese, A., Palma, E., Muscoli, C. & Mollace, V. 2020. Role of TSPO/VDAC1 upregulation and matrix metalloproteinase-2 localization in the dysfunctional myocardium of hyperglycaemic rats. International Journal of Molecular Sciences 21(20): 7432.

Gulsin, G.S., Athithan, L. & McCann, G.P. 2019. Diabetic cardiomyopathy: Prevalence, determinants and potential treatments. Therapeutic Advances in Endocrinology and Metabolism 10: 204201881983486

Hoit, B.D., Castro, C., Bultron, G., Knight, S. & Matlib, M.A. 1999. Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. Journal of Cardiac Failure 5(4): 324-333.

Huo, J-L., Feng, Q., Pan, S., Fu, W-J., Liu, Z. & Liu, Z. 2023. Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discovery 9(1): 256.

Huynh, K., Bernardo, B.C., McMullen, J.R. & Ritchie, R.H. 2014. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacology and Therapeutics 142(3): 375-415.

International Diabetes Federation (IDF). 2021. IDF Diabetes Atlas. 10th ed. Brussel, Belgium: International Diabetes Federation. www.diabetesatlas.org.

Jia, G., Hill, M.A. & Sowers, J.R. 2018. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circulation Research 122(4): 624-638.

Lateef, R., Al-Masri, A. & Alyahya, A. 2015. Langendorff’s isolated perfused rat heart technique: A review. International Journal of Basic and Clinical Pharmacology 4(6): 1314-1322.

Liang, R., Zhao, Y., Shi, M., Zhang, G., Zhao, Y., Zhang, B. & Liang, R. 2021. Skimmin protects diabetic cardiomyopathy in streptozotocin‐induced diabetic rats. The Kaohsiung Journal of Medical Sciences 37(2): 136-144.

Lim, Y.C., Budin, S.B., Othman, F., Latip, J. & Zainalabidin, S. 2017. Roselle polyphenols exert potent negative inotropic effects via modulation of intracellular calcium regulatory channels in isolated rat heart. Cardiovascular Toxicology 17(3): 251-259.

Liu, X., Guo, B., Zhang, W., Ma, B. & Li, Y. 2021. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-κB signalling pathway. The Journal of Biochemistry 170(3): 349-362.

Liu, X., Song, F., Liu, C. & Zhang, Y. 2020. 25‑OH‑PPD inhibits hypertrophy on diabetic cardiomyopathy via the PI3k/Akt/GSK‑3β signaling pathway. Experimental and Therapeutic Medicine 20(3): 2141-2147.

Lorenzo-Almorós, A., Tuñón, J., Orejas, M., Cortés, M., Egido, J. & Lorenzo, Ó. 2017. Diagnostic approaches for diabetic cardiomyopathy. Cardiovascular Diabetology 16: 28.

Luo, J., Yan, D., Li, S., Liu, S., Zeng, F., Cheung, C.W., Liu, H., Irwin, M.G., Huang, H. & Xia, Z. 2020. Allopurinol reduces oxidative stress and activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. Journal of Cellular and Molecular Medicine 24(2): 1760-1773.

Marchini, G.S., Cestari, I.N., Salemi, V.M.C., Irigoyen, M.C., Arnold, A., Kakoi, A., Rocon, C., Aiello, V.D. & Cestari, I.A. 2020. Early changes in myocyte contractility and cardiac function in streptozotocin-induced type 1 diabetes in rats. PLoS ONE 15(8): e0237305.

Marcinkiewicz, A., Ostrowski, S. & Drzewoski, J. 2017. Can the onset of heart failure be delayed by treating diabetic cardiomyopathy? Diabetology & Metabolic Syndrome 9(1): 21.

Mohammed Yusof, N.L., Tengku Affendi, T.N.T., Jubaidi, F.F., Zainalabidin, S. & Budin, S.B. 2020. Hibiscus sabdariffa Linn. (Roselle) polyphenols-rich extract prevents hyperglycemia-induced cardiac oxidative stress and mitochondrial damage in diabetic rats. Sains Malaysiana 49(10): 2499-2506.

Mohammed Yusof, N.L., Zainalabidin, S., Mohd Fauzi, N. & Budin, S.B. 2018. Hibiscus sabdariffa (Roselle) polyphenol-rich extract averts cardiac functional and structural abnormalities in type 1 diabetic rats. Applied Physiology, Nutrition and Metabolism 43(12): 1224-1232.

Mohan, M., Dihoum, A., Mordi, I.R., Choy, A.M., Rena, G. & Lang, C.C. 2021. Left ventricular hypertrophy in diabetic cardiomyopathy: A target for intervention. Frontiers in Cardiovascular Medicine 8: 746382.

Moral‐Sanz, J., Lopez‐Lopez, J.G., Menendez, C., Moreno, E., Barreira, B., Morales‐Cano, D., Escolano, L., Fernandez‐Segoviano, P., Villamor, E., Cogolludo, A., Perez‐Vizcaino, F. & Moreno, L. 2012. Different patterns of pulmonary vascular disease induced by type 1 diabetes and moderate hypoxia in rats. Experimental Physiology 97(5): 676-686.

Mostafavinia, A., Amini, A., Ghorishi, S.K., Pouriran, R. & Bayat, M. 2016. The effects of dosage and the routes of administrations of streptozotocin and alloxan on induction rate of type1 diabetes mellitus and mortality rate in rats. Laboratory Animal Research 32(3): 160.

Nakamura, M. & Sadoshima, J. 2018. Mechanisms of physiological and pathological cardiac hypertrophy. Nature Reviews Cardiology 15(7): 387-407.

Oh, J.E., Jun, J.H., Hwang, H.J., Shin, E.J., Oh, Y.J. & Choi, Y.S. 2019. Dexmedetomidine restores autophagy and cardiac dysfunction in rats with streptozotocin-induced diabetes mellitus. Acta Diabetologica 56(1): 105-114.

Paolillo, S., Marsico, F., Prastaro, M., Renga, F., Esposito, L., De Martino, F., Di Napoli, P., Esposito, I., Ambrosio, A., Ianniruberto, M., Mennella, R., Paolillo, R. & Gargiulo, P. 2019. Diabetic cardiomyopathy: Definition, diagnosis, and therapeutic implications. Heart Failure Clinics 15(3): 341-347.

Ritchie, R.H. & Abel, E.D. 2020. Basic mechanisms of diabetic heart disease. Circulation Research 126(11): 1501-1525.

Salvatore, T., Pafundi, P.C., Galiero, R., Albanese, G., Di Martino, A., Caturano, A., Vetrano, E., Rinaldi, L. & Sasso, F.C. 2021. The diabetic cardiomyopathy: The contributing pathophysiological mechanisms. Frontiers in Medicine 8: 695792.

Shaher, F., Wang, S., Qiu, H., Hu, Y., Zhang, Y., Wang, W., AL-Ward, H., Abdulghani, M.A.M., Baldi, S. & Zhou, S. 2020. Effect and mechanism of Ganoderma lucidum spores on alleviation of diabetic cardiomyopathy in a pilot in vivo study. Diabetes, Metabolic Syndrome and Obesity 13: 4809-4822.

Silbiger, J.J. 2019. Pathophysiology and echocardiographic diagnosis of left ventricular diastolic dysfunction. Journal of the American Society of Echocardiography 32(2): 216-232.e2.

Soetikno, V., Sari, F.R., Sukumaran, V., Lakshmanan, A.P., Mito, S., Harima, M., Thandavarayan, R.A. Suzuki, K., Nagata, M., Takagi, R. & Watanabe, K. 2012. Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: Possible involvement of PKC–MAPK signaling pathway. European Journal of Pharmaceutical Sciences 47(3): 604-614.

Tate, M., Deo, M., Cao, A.H., Hood, S.G., Huynh, K., Kiriazis, H., Du, X.J., Julius, T.L., Figtree, G.A., Dusting, G.J., Kaye, D.M. & Ritchie, R.H. 2017. Insulin replacement limits progression of diabetic cardiomyopathy in the low-dose streptozotocin-induced diabetic rat. Diabetes and Vascular Disease Research 14(5): 423-433.

Tate, M., Grieve, D.J. & Ritchie, R.H. 2017. Are targeted therapies for diabetic cardiomyopathy on the horizon? Clinical Science 131(10): 897-915.

Tatsuguchi, M., Seok, H.Y., Callis, T.E., Thomson, J.M., Chen, J-F., Newman, M., Rojas, M., Hammond, S.M. & Wang, D-Z. 2007. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology 42(6): 1137-1141.

Wan Nor Arifin & Wan Mohammad Zahiruddin 2017. Sample size calculation in animal studies using resource equation approach. Malaysian Journal of Medical Sciences 24(5): 101-105.

Wang, H., Huang, S., Xu, M., Yang, J., Yang, J., Liu, M., Wan, C., Liao, H., Fan, D. & Tang, Q. 2019. Galangin ameliorates cardiac remodeling via the MEK1/2–ERK1/2 and PI3K–AKT pathways. Journal of Cellular Physiology 234(9): 15654-15667.

Wang, L., Wu, H., Deng, Y., Zhang, S., Wei, Q., Yang, Q., Piao, S., Bei, W., Rong, X. & Guo, J. 2021. FTZ ameliorates diabetic cardiomyopathy by inhibiting inflammation and cardiac fibrosis in the streptozotocin-induced model. Evidence-based Complementary and Alternative Medicine 2021: 5582567.

Wang, S., Ding, L., Ji, H., Xu, Z., Liu, Q. & Zheng, Y. 2016. The role of p38 MAPK in the development of diabetic cardiomyopathy. International Journal of Molecular Sciences 17(7): 1037.

Wang, Y., Sun, H., Zhang, J., Xia, Z. & Chen, W. 2020. Streptozotocin-induced diabetic cardiomyopathy in rats: Ameliorative effect of PIPERINE via Bcl2, Bax/Bcl2, and caspase-3 pathways. Bioscience, Biotechnology, and Biochemistry 84(12): 2533-2544.

Wei, M., Ong, L., Smith, M.T., Ross, F.B., Schmid, K., Hoey, A.J., Burstow, D. & Brown, L. 2003. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart, Lung and Circulation 12(1): 44-50.

Xia, Z., Kuo, K-H., Nagareddy, P.R., Wang, F., Guo, Z., Guo, T., Jiang, J. & McNeill, J.H. 2007. N-acetylcysteine attenuates PKCbeta2 overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats. Cardiovascular Research 73(4): 770-782.

Xu, Z., Sun, J., Tong, Q., Lin, Q., Qian, L., Park, Y. & Zheng, Y. 2016. The Role of ERK1/2 in the development of diabetic cardiomyopathy. International Journal of Molecular Sciences 17(12): 2001.

Youssef, M.E., Abdelrazek, H.M. & Moustafa, Y.M. 2021. Cardioprotective role of GTS-21 by attenuating the TLR4/NF-κB pathway in streptozotocin-induced diabetic cardiomyopathy in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology 394(1): 11-31.

 

*Corresponding author; email: balkis@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next